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Abstract

We consider unsupervised approaches to three types of problems involving the prediction of natural
language information at or below the level of words: sequence labeling (including part-of-speech tagging);
decomposition (morphological analysis and segmentation); and lexical resource acquisition (building
dictionaries to encode linguistic knowledge about words within and across languages). We highlight the
strengths and weaknesses of these approaches, including the extent of labeled data/resources assumed
as input, the robustness of modeling techniques to linguistic variation, and the semantic richness of the
output relative to the input.

1 Introduction

In the last few years, many of the innovations in natural language processing research have been unsupervised
techniques for predicting linguistic information from data. Given the abundance of unannotated text data,
unsupervised approaches are very appealing for natural language processing. In this report we present
unsupervised solutions to three tasks which achieve close to state-of-the-art results in domains previously
dominated by fully supervised systems. Supervision is the extent to which a method for predicting the
unobserved structure of new data relies upon having seen training data labeled with the same type of
structure. Many unsupervised algorithms use data that has been annotated in some way, just not in the way
that is to be predicted.

Linguistic structure comes in many forms, and is often quite costly to annotate manually. In this paper,
we consider unsupervised problem areas corresponding to three categories of linguistic structure. The first
problem area is sequence labeling (§2), for which we focus on part-of-speech tagging. We describe and
compare two methods outlined in (Smith and Eisner, 2005) and (Haghighi and Klein, 2006). The second
problem area is morphological analysis (§3; primarily segmentation of words or morphemes); the methods
addressed are those outlined in (Monson et al., 2007, 2008a,b), (Snyder and Barzilay, 2008), and (Goldwater
et al., 2006; Goldwater et al., in submission). For the third problem area, lexical resource acquisition
(§4), we address the tasks of learning bilingual lexicons (Haghighi et al., 2008), labeling semantic roles for
verbs (Grenager and Manning, 2006), and extracting narrative event chains (Chambers and Jurafsky, 2008)
relating verbs. We conclude with a discussion of overall language variability along with required input,
training procedures, and input and output complexity for each approach.

Not addressed here are a multitude of other tasks which use unsupervised methods: these include parsing and
grammar induction (e.g. Klein, 2005; Smith, 2006; Liang et al., 2007); coreference resolution (e.g. Haghighi
and Klein, 2007; Poon and Domingos, 2008); and many others.

2 Unsupervised Tagging of Sequences

Our first problem area concerns the prediction of labels for a sequence of observed outputs. The dominant
task in this area has been part-of-speech (POS) tagging, though approaches to POS tagging can be ap-
plied to other sequence-based classification tasks, such as segmentation (e.g. information field segmentation
(Grenager et al., 2005)—see §2.2 below). In the models we discuss, it is assumed that:

• at test time, the system is presented with a sequence of discrete observations (emissions);

• the task is to assign a single label to each emission in the sequence; and

• the model is given a finite, discrete set of possible labels.

3



Unsurprisingly, supervised methods outperform unsupervised methods for the problem of sequence tagging.

2.1 Contrastive Estimation: Preferring the Seen over the Unseen

2.1.1 Exploiting Implicit Negative Evidence

Smith and Eisner (2005) build unsupervised models for sequence labeling that exploit implicit negative
evidence in a computationally efficient way. They describe an unsupervised parameter estimation method
called Contrastive Estimation and apply it to a sequence labeling problem—POS tagging given a tagging
dictionary and unlabeled text. They show that Contrastive Estimation outperforms EM when trained on
the same features, and is somewhat robust to variation in the size of the tagging dictionary.

The authors point out that the motivation behind EM is to push probability mass toward the training
examples. The key idea behind Contrastive Estimation (CE) is that it takes probability mass from implicit
negative examples and gives the mass to the positive training examples. This allows CE to incorporate
additional domain knowledge (that unseen word sequences are likely to be ungrammatical), which leads to
improvements in accuracy.

A key contribution of this work is the hypothesis that each training example provides a set of implicit negative
examples, which can be obtained by mutating a regular training example by way of deletions, transpositions,
and other operations. By taking probability mass away from these negative examples and in turn favoring
the original un-mutated training example, (Smith and Eisner, 2005) provide a compelling alternative to EM
for the POS tagging task.

The availability of implicit negatives examples hinges on the assumption that local mutations of a correct
example will likely create incorrect examples. This assumption is plausible and is experimentally tested. For
example, the authors consider the sentence

“Natural language is a delicate thing.”

Suppose one chooses one of its six words at random and removes it. For this sentence, there is 2/3 probability
that the resulting sentence will be ungrammatical. Or, one could randomly choose two adjacent words
and transpose them—none of these transformations produce valid conversational English. During training,
Contrastive Estimation keeps in mind the generated negative examples as well as the positive training
examples.

When estimating parameters for CE, the authors take an approach similar to EM but also take into con-
sideration the implicit negatives examples. They let −→x = 〈x1, x2, . . .〉 be the observed example sentences,
where each xi ∈ X , and let y∗i ∈ Y be the unobserved correct hidden structure for xi (e.g. a POS sequence).
Then we seek a model parameterized by

−→
θ such that the unknown correct analysis y∗i , is the best analysis

for xi. To find
−→
θ , one typically uses the EM algorithm to maximize

∏
i

p(X = xi|
−→
θ ) =

∏
i

∑
y∈Y

p(X = xi, Y = y|
−→
θ )

where X is a random variable over sentences and Y is a random variable over analyses.

Contrastive estimation takes a new approach and instead maximizes

4



∏
i

p(Xi = xi|Xi ∈ N (xi),
−→
θ )

the “neighborhood” function N (xi) ⊆ X returns a set of generated implicit negative examples, in addition
to the example xi itself, which is hopefully the only positive example in the neighborhood. A listing of
considered perturbations is in Figure 1:

Figure 1. Reproduced from (Smith and Eisner, 2005) slides. Neighborhood functions used for CE
training.

The authors investigate each of the neighborhood functions in Figure 1. The only neighborhood not in
Figure 1 is Length, the neighborhood of all sentences which have the same length as the sentence being
perturbed.

The authors experiment with trigrams using only unlabeled data, assuming a complete tagging dictionary,
with 96K words from The Wall Street Journal. Initial training parameters were set to be uniform (i.e.
completely uninformed). Smoothing was varied and the best result was reported in Figure 2.

Figure 2. Reproduced from (Smith and Eisner, 2005) slides. POS tagging task performance.

Popular supervised approaches to tagging sequences include HMMs and CRFs. For POS tagging, a com-
parison is provided in Figure 2. Unsurprisingly, supervised methods outperform unsupervised methods for
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the problem of sequence tagging. Note that (Toutanova and Johnson, 2008) also provide a competitive
unsupervised POS tagger; we outline their results in §2.3.

Length, Trans1, DelOrTrans1 consistently outperform EM, while Del1Word and Del1Subsequence
perform poorly. An important implication of this result is that “neighborhoods do not succeed by virtue
of approximating log-linear EM; if that were so, one would expect larger neighborhoods such as Del1Sub-
seq[uence] to out-perform smaller ones (like Trans1)—but this is not so.” Del1Subseq[uence] and
Del1Word, Smith and Eisner argue, perform poorly because their neighborhoods do not often enough
give classes of negative evidence: deleting a word or subsequence often doesn’t do enough damage, whereas
Trans1 is more dangerous.

2.1.2 Language Variation

The evaluations presented in (Smith and Eisner, 2005) are limited to English for the POS tagging task
(though Contrastive Estimation was used successfully for grammar induction in multiple languages (Smith,
2006)). We thus speculate as to how well this approach would extend to part-of-speech tagging for other
languages.

When using Contrastive Estimation for languages other than English, one has to consider the effectiveness of
the neighborhood functions with respect to the language. Even though the Length neighborhood performed
best for English, it may perform differently in other languages. For example, it may be that in some
languages deleting a word is much more likely to make a sentence ungrammatical, thus making the Delete
neighborhood favorable. Other neighborhood functions not considered in the paper might be appropriate for
other languages or tasks. For instance, a neighborhood function whereby suffix strings are modified so as to
yield other words in the vocabulary might facilitate the learning of morpheme segmentation or subject-verb
agreement in a morphologically rich language.

As the authors mention, “the assumption that the tagging dictionary is completely known is difficult to justify.
While a POS lexicon might be available for a language, certainly it will not give exhaustive information about
all word types in a corpus.” Smith and Eisner experimented with removing knowledge from the tagging
dictionary, to see how well various objective functions could recover. The authors attempt to recover the
lost information by adding features to the models.

The authors compared the performance of the best neighborhoods (Length, DelOrTrans1, and Trans1)
from the first experiment, plus EM, using three diluted dictionaries and the original one. They produced
diluted dictionaries by adding redundant tags to the set of possible tags for each word such that for rare
words all tags are possible, effectively “simulating zero prior knowledge” about the word.

In the absence of spelling features, all models perform worse, as the task has become strictly harder. How-
ever, the improvement from adding spelling features is striking: DelOrTrans1 and Trans1 “recover
nearly completely (ignoring the model selection problem) from the diluted dictionaries”. Unfortunately, it
is untested how well spelling features would fare in languages other than English.

Though Smith and Eisner show that Contrastive Estimation is robust to degradation of the dictionary, their
experiments nevertheless assume dictionaries will contain thousands of entries. Even though the dictionary
is diluted, there is still a large amount of supervision for the common word types in the corpus. Requiring
fewer examples is more useful when tagging sentences from a rare language. We next consider an approach
which requires only a few prespecified associations between tags and word types.
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2.2 Categorizing with Prototypes

2.2.1 An Exemplar-Based Model

Haghighi and Klein (2006) accomplish unsupervised learning of sequence models given just a few output
(emission) types that exemplify each label. These exemplars are called prototypes. The intuition is explained
as follows: “In providing a prototype [. . . ] we may intend that words which are in some sense similar
to a prototype generally be given the same label(s) as that prototype.” Put another way, if a category
corresponding to a label is thought of as a cluster under some similarity metric, the prototypes are the data
points nearest to the center of the cluster.

A prototype list contains a set of prototype words for each possible label. For POS tagging, this means a few
example words corresponding to each part of speech. The authors build a list with three prototypes per POS:
for instance, years, shares, and companies are designated prototypes of plural common nouns (nns) and it,
he, and they exemplify personal pronouns (prp). Prototype lists can be very small (the experiments use
three prototypes per POS); as the authors note, this is an advantage over previous methods (Merialdo, 1994;
Smith and Eisner, 2005) which used lists of all possible tags for each word. For the experiments, the three
prototypes per tag were selected automatically from labeled data (the three most frequent word types which
did not appear more frequently with another POS tag); in principle, however, the prototype list could be
constructed by hand. Note that prototypes need not be exclusive to their most frequent POS; for instance,
shares could be a verb, but was more likely to be a noun in the corpus used to select the prototypes.

Once the prototype list was created, it was used in the following way: feature vectors were created for each
word type, with frequent nearby words as features.1 Based on these features, SVD was used to compute
the distributional similarity of all pairs of word types. Using this information, non-prototype words were
associated with “similar” prototypes (i.e. prototypes with similarity scores exceeding a threshold). For each
prototype z in this set, a feature proto = z was added to the feature vectors of every instance of this word,
to be used in estimating the model parameters. Additionally, all instances of the prototype words were fixed
to their respective labels from the prototype list.2

These prototype features (along with baseline features such as suffixes) were incorporated into a linear-chain
Markov Random Field (MRF) model. A type of log-linear model, linear-chain MRFs are the undirected
equivalent of HMMs; they resemble CRFs, but model the joint distribution of labels and emissions, not
the labels conditioned on the emissions. Like any other undirected graphical model, this joint distribution
decomposes into a product of local distributions corresponding to cliques in the graph. Due to the Markov
assumption present in linear-chain MRFs (also present in HMMs and CRFs), there are two types of cliques:
transitions (pairs of adjacent labels) and emissions (label-observation pairs). To approximate the maximum
likelihood estimate, the authors use the forward-backward algorithm for lattices of a particular length—i.e.
the length neighborhood function of (Smith and Eisner, 2005).

2.2.2 Experiments

The effectiveness of a prototype-based approach was tested experimentally on two tasks. First, the prototype-
based model achieved near state-of-the-art performance on unsupervised POS tagging for English and Chi-
nese, despite the fact that state-of-the-art systems use large dictionaries of possible tags for each word. For
Chinese POS tagging, their baseline was 34.4% where as POS tagging with prototypes achieved 57.4%. For
English POS tagging, the best prototype-based result is somewhat worse than that of Smith and Eisner’s

1For the POS tagging model, word contexts were represented in terms of relative position; for information field segmentation,
on the other hand, only distance was used—whether the context word appeared to the right or to the left was irrelevant.

2The paper also lists results demonstrating that the similarity measure for non-prototype words improves accuracy over
simply fixing the prototype word labels. The prototype-augmented results listed below include the similarity technique.
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2005 best unsupervised result using a full tagging dictionary, but better than Contrastive Estimation with a
diluted dictionary. More recently, Toutanova and Johnson (2008) reported an unsupervised result surpassing
these two methods. A comparison of the three unsupervised techniques for English POS tagging is given in
Figure 3.

Second, a prototype-based model was constructed for the information field segmentation task of (Grenager
et al., 2005). Given a data set of classified ads, the task is to segment each ad and label parts according
to attributes/fields: the 11 possible labels include roommates, neighborhood, and utilities, which
are common attributes of apartment listings. Approaching the segmentation and labeling problem with a
sequence over words (where field boundaries are implicitly defined as consecutive words with different labels),
the authors construct a prototype list similar to a POS list: for instance, close, near, and shopping exemplify
the neighborhood field. The prototype list was extracted from labeled data using the same criteria as for
the POS tagging experiment. Unsupervised performance on this task surpasses that of previous work. The
results for English are in the table below.

Information Field Segmentation (Classifieds data set)
Haghighi and Klein (2006)
Baseline 46.4%
Prototype-augmented 74.1%

Grenager et al. (2005)
Best unsupervised 72.4%
Supervised 74.4%

2.2.3 Discussion

This formulation of the problem seems apt for sequences with multiple—but still reasonably few—target
(label) categories, provided that each category is semantically (and distributionally) coherent. The prototype-
based technique could be highly beneficial for languages without enough data for a tagging dictionary of the
size expected by other methods. Ideally, for a resource-poor language, it would be possible for a linguist
to provide a few exemplars for each tag without consulting a large corpus. It is not entirely clear to what
extent the choice of prototypes affects accuracy; in their experiments, Haghighi and Klein used a labeled
corpus to choose frequently-occurring words that were good exemplars of the POS category.

Taking the problem one step further, it is perhaps a weakness that all categories need to be listed and
assigned prototypes. What would happen if the state space were much larger or more structured? It might
be useful to have a model that could learn to propose new categories (or subcategories) for words which
don’t pattern much like any of the known prototypes. This paper uses labeled data to identify prototypes.
Unsupervised learning of prototype-based categories using a clustering framework would be an interesting
related research direction.

We note that the role of prototypes in mental categories has been a focal point in psychology and cognitive
linguistics. Evidence for prototypes has been found in perceptual categories such as color (Berlin and
Kay, 1969); in semantic categories (Rosch, 1978); and even in linguistic categories (Lakoff, 1987). Given
that degrees of prototypicality are indeed a psychological reality, this could explain the successful use of
prototypes in NLP applications such as POS tagging.

However, it’s difficult to see how prototype features could be used for certain formulations of problems
with very few categories, where words on their own do not provide much information about the category.
The prototype-based approach could be generalized to take feature sets as prototypes, and use a similarity
function to find the most similar feature vector prototype. In effect, this would be a form of dimensionality
reduction.
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Finally, we wonder if a different technique for automatic prototype selection from labeled data would have
been more effective—for instance, choosing frequent words with very low entropy over labels. Their technique
doesn’t remove the possibility that a word which occurs frequently with two different labels would be selected
as a prototype for the more frequent of the two.

2.3 Summary of Sequences

We detailed two papers that address the POS tagging problem in an unsupvervised way. Smith and Eisner
(2005) use a tag dictionary along with a novel modification of EM to label sequences with POS tags. Haghighi
and Klein (2006) use a few prototypical examples of each tag to do the same. Both methods are minimally
supervised in that they require at least some examples of each tag. This may hinder their practicality when
used to label sequences of a rare language.

Sequences Smith & Eisner Haghighi & Klein
Word-Level
Word tokens in sequence   
Discrete set of labels/tags   
Per-type possible tags  
Per-label prototypes  
Per-token labels # #
Word context counts  

Sub–Word-Level
Character n-grams ( )  

 = input, #= output

In addition to these papers, we’d like to point to (Toutanova and Johnson, 2008), which provides a very
competitive solution for this task. As shown in Figure 3, over past years there has been a healthy increase
in accuracy for unsupervised English part-of-speech tagging, but there is still some work to be done to rival
supervised methods such as CRFs, where 99.5% of output is tagged correctly (see Figure 2).

Unsupervised English POS Tagging
24K tokens 48K tokens (2K sen.)

Haghighi and Klein (2006)
Baseline (trigram), Treebank tagset 42.4%
Prototype-augmented, Treebank tagset 79.1%
Prototype-augmented, reduced tagset 82.2%

Smith and Eisner (2005)
CE, with 2125-entry tagging dictionary 79.5%
CE, with 3362-entry tagging dictionary 88.1%
CE, with 5406-entry tagging dictionary 90.4%

Toutanova and Johnson (2008)
Latent Dirichlet Allocation 93.4%

Figure 3. Tagging accuracy for three unsupervised POS systems. The reduced tagset used by
Haghighi and Klein is that of Smith and Eisner. Contrastive Estimation results are given for three
conditions corresponding to the amount of information in the tagging dictionary. Constructed from
the full (labeled) corpus, the dictionary has 5406 word types; using only words that appeared at least
twice, it has 2125 word types; and using only words that appeared in the first half of the data, it has
3362 word types.
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3 Unsupervised Approaches to Morphology

So far we have considered the labeling of observed units (words) in sequences. Now we consider problems in
which the boundaries between units are unobserved. Segmentation is problem of predicting these boundaries.
The tasks we will consider concern morphological units.

Morphology refers to the internal structure of words. Consider the adjective unsupervised : it decomposes
into a verb root, a suffix, and a prefix—un-supervise-d. Meaningful units within words (roots, prefixes,
and suffixes) are known as morphemes. Morpheme segmentation is thus the task of identifying morpheme
boundaries.

Morphological structure is not limited to morpheme boundaries: a richer morphological parse is
[Aun-[A[V supervise]-d]], which shows how the word arises from joining morphemes together, one at a time.
The bare verb supervise is first joined with the -d suffix indicating completion (similar to the regular past
tense suffix on verbs). But in this case, supervised is not a verb but an adjective derived from a verb, or
participle (it modifies a noun, as in the supervised algorithm). Then, the un- prefix is added to negate
the adjectival stem (the result remains an adjective). We know the ordering could not have been otherwise,
because unsupervise is not a word. Affix is a general term for prefix or suffix, and the portion of the word
an affix attaches to is called its stem. Modeling the hierarchical structure of morphology could be useful for
tasks such as machine translation, in much the same way that syntactic parses can be exploited for these
tasks.

While a morphological parser that recognizes this complex structure is not out of the realm of possibility,
most unsupervised work to date has been focused on the segmentation task alone. The unsupervised meth-
ods discussed below seek to predict morpheme boundaries by looking for common prefixes and suffixes in
unlabeled data. Some go one step further, explicitly modeling possible stem/affix pairings, or paradigms. As
the morphology of English is rather paltry, we take an example from Spanish: the verb hablar ‘to speak’ is
conjugated according to tense and grammatical characteristics of the subject—hablo ‘(I) speak’, hablamos
‘(we) speak’, hablan ‘(they) speak’, etc. Since the root habl- can take one of many suffixes depending on
the grammatical context, we refer to these suffixes as the paradigm of the verb. In some cases the paradigm
generalizes to many different verbs (roots), and in other cases it is specific to a single root—it is irregular.
Irregular patterns are a major challenge for broad-coverage morphological systems.

All of the models discussed herein assume agglutinative morphology. The morphology of an agglutinative
language consists only of roots, prefixes, and suffixes. For other languages, such as Arabic and Turkish,
morphological structure is more complex—and as a result, these approaches are less successful for these
languages.

Our focus will be on three unsupervised approaches: the ParaMor algorithm for morphology induction
(Monson et al., 2007, 2008a,b); a nonparametric Bayesian approach to word segmentation (Goldwater et al.,
2006; Goldwater et al., in submission); and a nonparametric Bayesian approach to morpheme segmentation
which makes use of multilingual data (Snyder and Barzilay, 2008). There are a number of other unsupervised
approaches which have modeled morphology with some success (e.g. Yarowsky and Wicentowski, 2000;
Goldsmith, 2001, 2006; Adler and Elhadad, 2006; Creutz and Lagus, 2007).

3.1 Learning Inflectional Paradigms: ParaMor

(Monson et al., 2007) describes ParaMor, an algorithm for unsupervised morphology induction. ParaMor
studies the vocabulary in a corpus and infers paradigms based on counts of substrings of the word types. A
ParaMor paradigm consists of a set of stems and a set of suffixes which can apply alternately to those stems.
The approach is best at finding inflectional paradigms. The paradigms can be used to segment words into
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their component morphemes.

3.1.1 The ParaMor Algorithm

We begin our discussion of ParaMor with a summary of the algorithm, which is described in (Monson et al.,
2007). The algorithm simply requires a vocabulary of words observed in a corpus. It does not rely on
a statistical model, but rather proposes paradigms based on type frequencies in the vocabulary. Stage 1
induces these paradigms, by first extracting partial paradigms such that every stem in the paradigm occurred
with every suffix (Algorithm 1); and then merging and filtering these partial paradigms to overcome sparsity
and spurious segmentations. Merging is done with greedy hierarchical clustering, and spurious segmentations
are removed by bounding the entropy of characters at the hypothesized morpheme boundaries. Stage 2
then uses these paradigms straightforwardly to propose all possible segmentations of new words. The version
described in (Monson et al., 2008b) can propose multiple segmentations at once, thereby accommodating
agglutinative languages.

Algorithm 1 Step 1.1 of the ParaMor system for morphological induction. Given the vocabulary of a
language, this algorithm produces a set of paradigms, where each paradigm 〈T, F 〉 represents a pairing of
a set of stems T with a set of suffixes F such that any of the stems in T can be suffixed with any of the
suffixes in F . α is a free parameter which can be tuned.

F ∗ = {all word-final character sequences observed in the vocabulary}
P ∗ = {}
for all f ∈ F ∗ do
T = {all candidate stems corresponding to f}
P = 〈T, {f}〉
P ∗ = P ∗ ∪ {P}

end for
for all P = 〈T, F 〉 ∈ P ∗ do

while |T | > |F | do
f ′ = candidate suffix following the largest fraction q of stems in T
if q ≤ α then

break
end if
T = T \ {all candidate stems which cannot form a word with f ′}

end while
end for
return P ∗

To illustrate this, we use the inflectional paradigm for regular -ar verbs in Spanish. The present tense
conjugation table looks like:

‘speak’ ‘dance’ ‘buy’ . . . generalization
infinitive hablar bailar comprar . . . t-ar

I hablo bailo compro . . . t-o
we hablamos bailamos compramos . . . t-amos

...
...

...
they hablan bailan compran . . . t-an
root habl- bail- compr- . . . t

Note that the root never occurs on its own, but is determined by subtracting the frequent suffixes (across
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verbs) from the vocabulary items.

If the vocabulary extracted from the corpus includes all conjugations of these two verbs (and several others fit-
ting the pattern), Algorithm 1 will successfully extract the candidate paradigm
〈{habl,bail, compr, . . . }, {-ar, -o, -amos, . . . , -an}〉. It may also extract paradigms based on erroneous seg-
mentations, such as 〈{hab,bai, . . . }, {-lar, -lo, -lamos, . . . , -lan}〉. The filtering step is designed to weed out
these erroneous paradigms.

In practice, however, many candidate paradigms will only be partial: for instance, if the vocabulary contained
hablar, bailar, hablan, bailo, compro, and compramos (along with overlapping inflections of other verbs from
the same true paradigm), we would want the algorithm to generalize these to a single paradigm. (This
amounts to smoothing, enabling the system to handle unseen words.) ParaMor’s merging step is designed
to accomplish this.

3.1.2 Results

The Morpho Challenge competition evaluated several morphology induction systems, measuring scores on
two sets of tasks: the linguistic analysis task of identifying morpheme boundaries in words, and several IR
tasks. A hybrid system combining the outputs of ParaMor and Morfessor (Creutz and Lagus, 2007)—another
algorithm, designed to handle both inflectional and derivational morphology—did well in Morpho Challenge
2007 (Monson et al., 2007).

With some improvements to ParaMor, detailed in (Monson et al., 2008b), the hybrid system won Morpho
Challege 2008, beating the other systems on every language in terms of F1 score on the linguistic analysis
task. Winning scores were in the 50% range for English, German, Finnish, and Turkish, and about 40%
for Arabic (Monson et al., 2008a). The system did worst for Arabic, which is unsurprising due to Arabic’s
complex morphology. The authors speculate that updating ParaMor to handle prefixes as well as suffixes
would help for Arabic, English, and German. As for the IR evaluation, the ParaMor+Morfessor system
had the best average precision (over several IR tasks) for English and German, whereas another system did
better for Finnish.

3.1.3 Discussion

ParaMor succeeds at learning inflectional paradigms from raw text, and does so with a relatively simple
algorithm. This simplicity is attractive, as many of the statistical models used for morphology (including
the ones described below) are quite difficult to understand and implement. That ParaMor learns paradigms,
and not just segmentations, is another advantage, as induced paradigms are more easily interpreted than
highly abstract probability distributions.

3.1.4 Language Variation

When moving to other languages, it is difficult to see how ParaMor can be extended to achieve better
accuracy or accommodate more complex morphological phenomena. The authors speculate that it could be
extended to handle prefixes as well as suffixes, but this still assumes agglutinative morphology. While the
model relies heavily on type frequency (of suffix strings with respect to the stem types they can attach to),
ParaMor fails to exploit other statistical properties such as token frequency. Both type and token frequency
are known to be important in language; for instance, it is well known that the most frequent verbs (such as
be, have, make, do, and go in English) are most likely to be morphologically irregular (Bybee, 1985).
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Finally, the authors note that ParaMor is less successful for derivational morphology, which is likely part of
the reason that combining ParaMor and Morfessor was necessary to achieve unsupervised state-of-the-art
results in the Morpho Challenge. Ideally, one system would be able to learn both inflectional and derivational
phenomena, though it is an open question whether statistical models would benefit from encoding this
distinction explicitly.

3.2 A Bayesian Approach to Segmentation

Next we turn to the task of word segmentation, which is a form of morphological segmentation (only for
a particular class of morphemes, i.e. words). This is necessary for processing speech, as well as text for
languages such as Chinese where word boundaries are not marked orthographically. We discuss the Bayesian
approach introduced in (Goldwater et al., 2006) and elaborated at length in (Goldwater et al., in submission).

3.2.1 Two Nonparametric Models

Goldwater et al. (2006) introduce two Bayesian models for word segmentation: a unigram model which uses
the Dirichlet Process; and a bigram model using a Hierarchical Dirichlet Process (Teh et al., 2006).

The generative story for the unigram model is as follows: the document is generated as a sequence of words,
which are unobserved. For each word, there is some probability that it is one of the words seen previously,
and there is some probability that it is novel. The probability that it is novel is proportional to some
hyperparameter α0. If it is novel, we then generate the characters (or phonemes) in the word according to
some unigram distribution P0. If it is not novel, then we choose a previously-generated word with probability
proportional to the number of times that word was generated previously. This procedure characterizes a
Dirichlet Process (DP), and we write

U ∼ DP (α0, P0)
wi|U ∼ U

where the base distribution P0 is the unigram distribution over characters for a new word, and the concen-
tration parameter α0 affects the preference for sparsity of words. The probability that ` will be the character
sequence drawn for the ith word is given by

P (wi = `|wi−1
1 ) =

n` + α0 · P0(wi = `)
i− 1 + α0

where n` is the number of times the word ` has been drawn previously. This model is nonparametric because
the number of parameters is free to grow with the size of the data: larger corpora will have larger vocabularies,
and each word in the vocabulary corresponds to a parameter. The Dirichlet Process accomplishes this by
always reserving some probability mass for additional parameters—in principle accommodating an infinite
number of parameters. This is feasible, however, because the probability of adding a new parameter gets
increasingly unlikely as the model grows (how fast it does so is controlled by the concentration parameter).

Because of a useful property called exchangeability, it is possible to sample words at random from a Dirichlet
Process, conditioning them on all other words—i.e. P (wi = `|wi−1

1 ,w|w|i+1) with the same right-hand side
as the equation above, except replacing i in the denominator with |w|. The authors exploit this property,
deriving and implementing a Gibbs sampler to perform inference in the model.

In the Hierarchical Dirichlet Process, or HDP (Teh et al., 2006), a distribution (call it U) sampled from
a Dirchlet Process is used as the base distribution for another Dirichlet Process. The unigram DP model

13



described above serves as the basis for the bigram model, but with an added layer: first, wi|wi−1 is chosen
to be novel or previously seen—i.e. it is decided whether the bigram has been seen, given the previous word.
This is proportional to the number of previous bigrams starting with wi−1. The preference for novel vs.
seen bigrams is affected by a second concentration parameter, α1. If the bigram is previously seen, then wi

is chosen with probability equal to the proportion of time it has followed wi−1 in the past. Otherwise, wi

is chosen from the unigram DP distribution as before (parameterized with α0 and the unigram character
distribution)—except now the choice of word wi is dictated by the proportion of previously seen bigram
types having that choice as their second word. The hierarchical procedure is thus

U ∼ DP (α0, P0)
B`′ ∼ DP (α1, U) ∀`′

wi|wi−1 = `′, B`′ ∼ B`′ ∀`′

Intuitively, U is a generalized distribution over words given some previous word, and B`′ is a more specific
distribution taking into account that the previous word was observed to be `′. This ability to generalize over
distributions thought to be similar/related (but not identical) is the essence of the HDP.

As with the unigram DP model, a Gibbs sampler is used for inference. Refer to (Goldwater et al., 2006, in
submission) for further details on the DP and HDP models—including how they treat utterance boundaries—
and the corresponding sampling procedures.

3.2.2 Results

The following table, reproduced from (Goldwater et al., in submission), compares the performance of several
word segmentation systems on a corpus of child-directed speech which has phonemic transcriptions. Gold-
water et al.’s models are the unigram Dirichlet Process model (DP) and the bigram Hierarchical Dirichlet
Process model (HDP).3 The others are the unigram MBDP-1 model from (Venkataraman, 2001), and the
unigram and bigram varieties of the n-gram segmentation system (NGS) from (Brent, 1999). Each model’s
performance is measured in terms of precision, recall, and F-score according to three different criteria: the
words whose boundaries were correctly identified (P, R, F); the individual boundaries themselves (BP, BR,
BF); the induced lexicon (vocabulary) of the corpus (LP, LR, LF).

Performance measure
Model P R F BP BR BF LP LR LF
NGS-u 67.7 70.2 68.9 80.6 84.8 82.6 52.9 51.3 52.0
MBDP-1 67.0 69.4 68.2 80.3 84.3 82.3 53.6 51.3 52.4
DP 61.9 47.6 53.8 92.4 62.2 74.3 57.0 57.5 57.2
NGS-b 68.1 68.6 68.3 81.7 82.5 82.1 54.5 57.0 55.7
HDP 75.2 69.6 72.3 90.3 80.8 85.2 63.5 55.2 59.1

The unigram DP does well in terms of lexicon induction and in terms of boundary precision, but trails the
other models significantly with respect to a majority of metrics. It is thus under-predicting boundaries. In
contrast, the bigram HDP model fared best for a majority of performance metrics, including F-score, and is
not too far behind the highest score on any of the remaining four metrics.

3In addition to the concentration parameter(s), both models have hyperparameters p#, the stop probability for a sequence
of phonemes; and p$, the probability of an utterance boundary. Hyperparameter settings for these results were as follows: for
the unigram DP model, p# = .5, p$ = .5, and α0 = 20; and for the bigram HDP model, p# = .2, p$ = .5, α0 = 3000, and
α1 = 100.
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3.2.3 Discussion

Goldwater et al.’s approach to word segmentation is attractive for many reasons. Their use of the Hierarchical
Dirichlet Process enables backoff from a bigram model to a unigram model. The models can be trained using
standard sampling techniques, with only the unsegmented text as input. Unfortunately, these techniques are
difficult to implement—but this is a general problem with Bayesian inference, not unique to the task at hand.
Because the only input is raw text, and because the model only represents phonemes/characters and words,
this approach contains no inherent bias towards any particular type of language—though performance for
some languages might benefit from an even richer model. Unfortunately, the model was only tested on an
English corpus of child-directed speech; it would be nice to see how it performs (a) for longer utterances, (b)
for orthographic word segmentation (e.g. English text with spaces removed), and (c) for other languages.

It seems like it would be straightforward to adapt these models to the standard morpheme segmentation
task, simply by changing the character n-gram distribution P0 to prefer shorter (i.e. morpheme-length rather
than word-length) strings, and possibly changing the concentration parameters α0 and α1. Additionally, we
envision that the HDP might be useful for encoding generalizations over morphophonological variants, e.g.
discovering that the English phoneme sequences /s/, /z/, and /@z/—or their orthographic counterparts s
and es—are in fact variants of the same (plural) suffix. In a similar vein, Johnson (2008) showed that a
nonparametric model for Sesotho (a morphologically complex language) is better for word segmentation
when it takes morphology into account. Thus, we feel that nonparametric Bayesian methods are a promising
direction for unsupervised learning of morphology as well as word segmentation.

3.3 Improving Segmentation with Multilingual Input

Snyder and Barzilay (2008) offer an approach that uses parallel multilingual data to improve training of a
morpheme segmentation model. The model as described only considers data from two languages at once
(experiments are done with several different language pairs). However, they claim it is extensible to multiple
languages. Their generative model represents corresponding morphemes in both languages with what they
call abstract morphemes, as well as so-called stray morphemes that only occur in one of the two languages.
Improvement over a monolingual baseline is demonstrated for aligned phrases from the Hebrew Bible with
parallel data for Hebrew, Aramaic, Arabic, and English.

3.3.1 A Multilingual Model

Figure 4 shows an example parallel phrase with morphological alignments in the four languages:

Figure 4. Morphological alignments across four languages. Reproduced from (Snyder and Barzilay,
2008).

In this example, each of the parallel phrases has three morphemes, all of which are aligned to mor-
phemes in the other phrases—thus, for this example there are three abstract morphemes in the model:
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〈in, fy, b, b〉, 〈my, y, y, y〉, etc. Unaligned morphemes would surface in the model as stray morphemes. The
model does not allow for one-to-many alignments, nor does it distinguish between prefixes, suffixes, and
stems/standalone words.4

A nonparametric Bayesian model is used for the abstract and stray morphemes and how they surface in
phrases. We now address the generative process and sampling procedure for this model.

Generative process: We adapt their notation, using the variable ` which can take the value from the set
L of languages being modeled. Subscripts always index the language.

1. Draw a distribution over possible morphemes in each language. The Dirichlet Process prior is pa-
rameterized with a language-specific base distribution P`, which “can encode prior knowledge about
the properties of morphemes in each [language], such as length and character n-grams”: L`|α, P` ∼
DP (α, P`) ∀` ∈ L

2. Draw a distribution over abstract morphemes relating the languages:

A|α′, P ′ ∼ DP (α′, P ′)
〈m1,m2, . . . ,m|L|〉 ∼ A

Variables of the form m` are simply strings in language `; thus, an abstract morpheme is a tuple of
strings across multiple languages. In their phonetic model, P ′ is defined so as to take into account
known sound correspondences between language pairs (using a linguistically-informed edit distance
metric).

3. For a parallel phrase:

(a) Draw the number of language-unique stray morphemes that will be used from each language
(n` corresponding to language `), as well as the number of abstract morphemes having a
cross-lingual correspondence that will be used (n∗): n∗, n1, n2, . . . , n|L| ∼ Poisson(λ)

(b) Draw stray and abstract morphemes for each of the languages in the phrase:

m1
` , . . . ,m

n`
` ∼ L` ∀` ∈ L [stray morphemes]

〈m(1)
1 ,m

(1)
2 , . . . 〉, . . . , 〈m(n∗)

1 ,m
(n∗)
2 , . . . 〉 ∼ A [abstract morphemes]

The phrase now contains n` + n∗ morphemes in language `: m1
` , . . . ,m

n`
` and m

(1)
` . . .m

(n∗)
` .

The abstract morphemes constitute implicit alignments; the stray morphemes are equivalent to
unaligned morphemes. So far, these occur in no particular order, and word boundaries are not
defined.

(c) Draw the ordering of morphemes for each language in the phrase. We will use µ` to denote the
ordered morphemes for language `: µ1

` . . . µ
n`+n∗
` ∼ ORDER|m1

` , . . . ,m
n`
` ,m

(1)
` . . .m

(n∗)
` , where

ORDER is defined uniformly over all permutations—i.e. ORDER(•|−→m) = 1
|−→m|! . Note that word

boundaries remain undefined.
(d) Determine which pairs of adjacent ordered morphemes should be fused as part of the same word:

w1
` . . . w

s`
` ∼ FUSE|µ1

` . . . µ
n`+n∗
` , where s` is the size of the phrase for language `. FUSE is

defined uniformly, i.e. FUSE(•|−→µ ) = 1
2|
−→µ |−1 .

Sampling algorithm: Unfortunately, the paper provides few details regarding the sampling technique,
except that it is a “blocked and collapsed Gibbs sampler” which marginalizes over implicit morpheme align-
ments.

4Only concatenative morphology is addressed—that is, every morpheme is assumed to occur on its own or concatenated
linearly with other morphemes. Arabic, Hebrew, and Aramaic have nonconcatenative morphemes, but the experiments only
consider concatenative segmentations.
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3.3.2 Results

The model was evaluated by extracting short parallel phrases (using automatic alignments) for training.
For the testing phase, the system proposed segmentations for phrases in a single language, which were
then evaluated against a gold standard. Several different models were evaluated on Hebrew and Arabic:
a monolingual model, serving as a baseline; models trained with a second language, using a length-based
edit distance metric; and models trained with a second Semitic language, using a phonological edit distance
metric.

The best result was for Arabic, when trained with Arabic+Hebrew and the phonological edit distance: F1

was 72.20 (67.75 precision, 77.29 recall). This was an improvement of about 9 points over the monolingual
baseline, and 7 points over another state-of-the-art system, Morfessor (Creutz and Lagus, 2007). Without the
phonological similarity metric, Arabic+Hebrew, Arabic+Aramaic, and Arabic+English had similar scores
(F1 between 68 and 69). The scores when tested on Hebrew were about 10 points less than for Arabic,
and the F1 score for the Arabic+Hebrew+phonology when tested on Hebrew only slightly outpaced that of
Morfessor (63.87 vs. 61.29), though it did surpass that of the monolingual baseline (59.78).

Thus, this model not only demonstrates the value of multilingual input for morpheme segmentation, but
is also competitive with the state-of-the-art for both Hebrew and Arabic. The authors further conclude
that a related language is somewhat more useful than an unrelated language when similar structure can be
exploited (as enabled by the phonological similarity metric).

3.3.3 Discussion

We feel that Snyder and Barzilay’s model is an exciting start to leveraging multilingual information to im-
prove statistical morphological analysis. Overall, the separation of abstract morphemes (cross-linguistically
relevant) from stray morphemes (language-specific) feels intuitive. However, we would like to identify several
aspects of the model which we believe could be improved.

First, we feel that their choice of distributions for a couple of variables is suspect—particularly ORDER
and FUSE, which are assumed to be uniform. Experimentation with more sophisticated distributions is
probably warranted. For instance, FUSE might be structured so as to encapsulate the distinction between
prefixes, roots, and suffixes (morphemes which pattern as suffixes are unlikely to follow a word boundary,
and so forth).

Second, this model is probably not robust to language-specific morphophonological variation: if there is a
morphological correspondence between two languages, but morphophonological variants pattern differently
in the two languages, then the paper’s definition of abstract morpheme would not seem particularly suitable.
Third, unlike ParaMor (§3.1 above), Snyder and Barzilay’s approach doesn’t model paradigms—in this
model, morphemes are related across languages, but not within a language. A generalization of this model
that might remove these two deficiencies would be to allow each abstract morpheme to consist of multiple
realizations in each language. Thus, morphophonological variants, as well as paradigmatic variants (e.g.
inflectional suffixes on verbs in a language) could all be encapsulated in a single abstract morpheme relating
them to corresponding variants in other languages.

Fourth, like the other unsupervised approaches to morphology we have seen, this model is designed for agglu-
tinative languages. Performance with nonconcatenative morphology in Semitic languages is not evaluated,
and presumably would not be very good. Any attempt to model morphological processes besides prefixation
and suffixation would likely necessitate significant changes to this model.

Fifth, the model is evaluated on the level of phrases—parallel phrases are automatically aligned. We wonder
how complete these alignments are; if there are unaligned phrases, then these are ignored in training, though
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presumably they could provide useful information under another model (or learning procedure). This would
be especially problematic if certain morphemes tend to occur in unaligned phrases. Additionally, it’s unclear
whether at test time this would scale up to full sentences, given that this adds significant uncertainty with
respect to the FUSE and ORDER distributions (which are assumed to be uniform, giving equal probability
to an exponential number of possible configurations).

3.4 Summary of Morphology

We have seen three approaches to unsupervised learning and annotation of morphological structure:

• ParaMor (Monson et al., 2007, 2008a,b), a deterministic procedure to extract inflectional paradigms
from a corpus vocabulary; these paradigms can then be used for morpheme segmentation.

• Two nonparametric Bayesian models for word segmentation (Goldwater et al., 2006; Goldwater
et al., in submission): a unigram model using the Dirichlet Process, and a bigram model using the
Hierarchical Dirichlet Process.

• A multilingual Bayesian model which leverages morpheme correspondences from parallel phrases
to improve morpheme segmentation (Snyder and Barzilay, 2008).

First, we compare the inputs and outputs of these three approaches:

Morphology Monson et al. Goldwater et al. Snyder & Barzilay
Phrase/Document-Level
Unsegmented text  
Parallel sentences G
Phrasal aligner G

Word-Level
Vocabulary (list of word types)  

Sub-Word–Level
Paradigms I
Segmentations J # J
Phonetic correspondences ( )

Legend
training test

input G H
output I J

All three methods produce segmentations at test time. However, they require different forms of input. The
Goldwater et al. approach needs only a raw corpus; the Monson et al. approach needs only the vocabulary
(word types) from a corpus; and the Snyder and Barzilay approach requires parallel phrases, optionally with
phonetic correspondences between related languages for best performance. Of these, parallel corpora are
the most difficult to acquire in general, but seem to offer useful information when available for a language.
Unlike methods for the other tasks described in this paper, these do not rely on the availability of parses,
stemmers, or part-of-speech tag sets for data (though these might in principle provide information relevant
to morphology).

The evaluations for the three models used different data and methodologies, so it is not possible to compare
them quantitatively with each other. Qualitatively, they take advantage of data in different ways. The Mon-
son et al. approach uses a simple algorithm to extract interpretable paradigms for inflectional morphology.
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The other two approaches seem more adept at learning the statistical patterns necessary for segmentation
tasks, but due to the nature of the Bayesian models, estimating and interpreting the parameters themselves
is more difficult. The generative stories for these two models are fairly intuitive, though we suspect they
might be improved by adding more structure.

4 Unsupervised Acquisition of Lexical Resources

So far we have seen unsupervised solutions to several word-level and sub–word-level prediction tasks, includ-
ing part-of-speech tagging and morpheme segmentation. Next we consider the problem of building linguistic
resources that can be useful for various tasks pertaining to words. In particular, unsupervised methods
are described for constructing bilingual lexicons from monolingual data (Haghighi et al., 2008); inferring
semantic roles for verbs and their corresponding syntactic realizations (Grenager and Manning, 2006); and
identifying related events that occur sequentially in narratives (Chambers and Jurafsky, 2008).

4.1 Constructing Bilingual Lexicons

4.1.1 Something from Nothing: A CCA-based Model

Haghighi et al. (2008) present a method for learning bilingual translation lexicons from monolingual corpora.
They do not use any data from each language other than monolingual sources of text, such as Wikipedia
articles, news articles, and a single side of Europarl data. Word types in each language are character-
ized by “purely monolingual features, such as orthographic substrings and word context counts.” To learn
translations the authors define and train a generative model based on Canonical Correlation Analysis.

Surprisingly, the authors present a method that can learn a translation lexicon between two divergent
languages using only monolingual corpora. When the two languages are historically related, they can improve
performance by adding orthographic features.

The lexicon produced is at most 1-1, meaning that each word on either side of the lexicon is either matched
with exactly one word from the other side of lexicon, or not matched at all. The authors’ choice of matching
allows unmatched words, and disallows one-to-many mappings. The motivation behind such simplifying
assumptions is to allow comparison to previous work.

Their model represents each word type as a feature vector derived only from the word-type and monotext.
They use two types of features: orthographic features which consist of character n-grams in the word, and
context features which represent counts of words that occur nearby in text.

Figure 5. Reproduced from (Haghighi et al., 2008) slides. Features on both sides are completely
monolingual.

After computing feature vectors for words which lie in different vector spaces, they define a generative model
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over “(1) a source lexicon, (2) a target lexicon, and (3) a matching between them.” Their model is based on
Canonical Correlation Analysis (CCA), which projects corresponding data points (vectors for word types) in
two spaces (the two languages) to a common latent space. Inference is done using a variant of the Viterbi-EM
algorithm. They compare to a standard baseline: the EditDist baseline, which is the maximum bipartite
matching with weights on the partition edges as normalized edit distances.

Figure 6. Reproduced from (Haghighi et al., 2008). Illustration of Matching Canonical Correlation
Analysis model. The latent concept zi,j originates in the canonical space. The observed word vectors
in the source and target spaces are generated independently given this concept.

The authors construct their models such that if two words are truly translations, “it will be better to relate
their feature vectors through the latent space than to explain them independently.” However, if a source
word is not a translation of any of the target words, it is possible for it to be left out of the matching and
thus be generated independently.

For experiments they build English-Spanish, English-French, English-Chinese, and English-Arabic lexicons
using monolingual data from Wikipedia articles, Europarl data5, and several other corpora. The authors
evaluated their results using the standard F1 measure. Precision is the proportion of correct proposed
translations, and recall is the proportion of proposed translations that were possible. Their system beats
any other previous unsupervised results.

An important note about the training data is that while the method presented makes no use of document-
level or sentence-level alignments, the models learned perform significantly better when the monolingual
text on either side of the training corpus are largely translations of each other. Specifically, this method
of constructing bilingual lexicons may not work when the monolingual text on either side of the are from
different domains. Their models perform significantly worse on corpora where the two monolingual sides
contain no parallel sentences: 49% and 62% F1 for two corpora without parallel sentences, versus 72% and
77% F1 for corpora with parallel sentences.

4.1.2 Language Variation

The authors mention that “while orthographic features are clearly effective for historically related language
pairs, they are more limited for other language pairs, where we need to appeal to other clues.”

Haghighi et al. explored how system performance varies for language pairs other than English-Spanish.
On the English-French task, their system achieves 88.3% precision at 0.33 recall (see Figure 7 for more
performance measures). This result shows that their system can handle language pairs for which it was not
initially designed.

5Europarl is a parallel corpus extracted from the proceedings of the European Parliament.
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Figure 7. Reproduced from (Haghighi et al., 2008). Orthographic features are less applicable for
languages that are not historically related. The columns represent recall at different values of precision.

One concern is how their system performs on language pairs where orthographic features are less applicable.
Results on disjoint English-Chinese and English-Arabic are given as EN-CH and EN-AR in Figure 7, both
using only context features. In these cases, their system performed less favorably, with 26.8% precision
and 31.0% precision at 0.33 recall, respectively. Lacking orthographic features, performance on EN-CH and
EN-AR suffered compared to EN-ES.

We now move onto two unsupervised tasks relating to verbs: Semantic role labeling for verbs, and Narrative
event chain extraction.

4.2 Identifying Subcategorization Frames for Verbs

Grenager and Manning (2006) present an unsupervised method to determine the semantic roles of a verb’s
dependents. For example, the verb give is associated with three semantic roles: that of the giver, the
recipient, and the thing given. These can all appear as arguments in sentence. Consider the sentence Sarah
Palin’s speech today gave me a stomachache. The verb has three arguments which correspond to the three
semantic roles of give: Sarah Palin’s speech, me, and a stomachache. These arguments are all noun phrases.
A fourth noun phrase, today, is called an adjunct because it is not a core semantic role of the verb, but
can modify events in general. Adjuncts can generally be omitted without altering the grammaticality of the
sentence. Moreover, depending on the verb and the construction, not all arguments need be expressed: a
corresponding passive sentence using only two is Today I was given a stomachache.

Grenager and Manning train a Bayesian model which relates a verb, its semantic roles, and their possible
syntactic realizations. In doing so, they address three problems: learning all the semantic roles associated
with a particular verb, given a variety of sentences using that verb; generalizing over the syntactic realizations
of a verb in relation to its arguments and adjuncts; and labeling the noun phrases in a sentence with verb-
specific semantic roles. Their unsupervised approach stands in contrast to current supervised methods of
learning dependents’ semantic roles, which are driven by hand-tagged corpora such as PropBank. PropBank
is a verb ontology covering a subset of the Penn Treebank. Verb instances are annotated with a sense
ID, and arguments are tagged so as to be consistent across all instances of that verb sense. There are loose
correspondences between verbal arguments—arg0 is generally used for intransitive subjects, arg1 for active
transitive subjects, and higher arguments for objects—however, there is no standard correspondence between
arguments and semantic roles that holds across verbs. Unfortunately labeled datasets such as PropBank are
too sparse, providing motivation for unsupervised techniques where data is abundant.

Their system relies on dependency parses of the sentences in the corpus. (These parses can be obtained
by running an English dependency parser, or by running a phrase structure parser and using deterministic
rules to transform phrase structure parses into dependency parses.) Dependencies are labeled with syntactic
relations such as subj (subject), np#1 (first noun phrase after the verb), np#2 (second noun phrase after
the verb), and prep x (prepositional modifier with preposition x).

In training, the model associates each verb with a small number of syntactic roles, with identifiers similar to
PropBank’s arg0, . . . , arg5. argm is used for all adjuncts. Note that the argument numbers do not rep-

21



resent explicit correspondences across verbs; thus give.arg2 may bear no relation to tell.arg2 (though their
procedure for assigning identifiers to roles may result in some correlations across verbs—see the paper for de-
tails of their procedure). Then, the model scores linkings, or mappings between a verb’s arguments/adjuncts
and their syntactic realizations (see Figure 9 below). These linkings are useful for the task of semantic role
labeling.

4.2.1 Generative Process

The learning method is based on a structured probabilistic model of the domain. A graphical representation
of the model is shown in Figure 8. The model encodes a “joint probability distribution over the elements of
a single verb instance, including the verb type, the particular linking, and for each dependent of the verb,
its syntactic relation to the verb, semantic role, and head word.”

v

ℓ

o

rjgj wj

1 ≤ j ≤ M

verb

linking

ordered linking

syntactic relation semantic role head word

give

ARG0 -> subj
ARG1 -> np#2
ARG2 -> np#1{ }
ARG0 -> subj
ARGM -> ?
ARG2 -> np#1
ARG1 -> np#2[ ]

np ARGM today/NN

Figure 8. Adapted from (Grenager and Manning, 2006). A graphical representation of the verb
linking model, with example values for each variable. The rectangle is a plate, indicating that the
model contains multiple copies of the variables shown within it: in this case, one for each dependent
(indexed by j). Variables observed during learning are shaded. Included are example values for a
ditransitive sentence with the verb give and temporal adjunct today.

What follows is a description of the generative process for the model, which we have adapted from (Grenager
and Manning, 2006):

1. Begin by generating the verb v.

2. Conditioned on the choice of v, generate a linking `, which defines both the set of roles to be expressed,
as well as the syntactic relations that express them.

3. Conditioned on choice of linking, now generate an ordered linking o, giving a final position in the
dependent list for each role and relation in the linking `, while also optionally inserting one or more
adjunct roles.

4. Now iterate through each of the M dependents 1 ≤ j ≤ M , generating each in turn. For each core
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argument, the semantic role rj and syntactic relation gj are completely determined by the ordered
linking o, so it remains only to sample the syntactic relation for the adjunct roles.

5. Finally, generate the head word of each dependent, conditioned on the semantic role of that dependent.

The authors mention a potential improvement to the generative process by adding word classes. Examples
of potentially useful word classes include person, object, place, and event. In such a scenario the word
class would be generated conditioned on the semantic role, and the choice of head word would then be
conditioned on the word class. This modification might improve results by moderating the effects of sparsity
during training.

4.2.2 Evaluation

The authors use the EM algorithm to train the above model, with training details found in the paper. Three
English newswire corpora are used for evaluation (an automatic parser was used for corpora without gold
standard parse trees). The authors evaluate the performance of their learned models by using them to
predict the semantic roles of constituents which were already identified as dependents of a verb instance.
They report two results: “coarse roles, in which all of the adjunct roles are collapsed to a single argm role,”
as opposed to core roles, in which performance is evaluated for core semantic roles only. The authors do
not report results on the all roles task, since their model does not distinguish between different types of
adjunct roles. For each task they report precision, recall, and F1. In the classification task, they compare
their system to an informed baseline, which is computed by labeling each dependent with a role that is a
deterministic function of its syntactic relation.

Their best system was trained on 1000 verb instances per verb type when available, and achieved an F1 score
of 0.897 on the coarse roles task, as opposed to an F1 of 0.856 for the deterministic baseline. Figure 9 shows
the verbs that were most improved by the model as compared to the baseline.

Figure 9. Learned linkings for the most improved verbs over the baseline. Arguments are abbreviated
as integers (arg0 as 0, etc.). Reproduced from (Grenager and Manning, 2006).

Overall, the authors show that it is possible to automatically extract the verb structure from unlabeled text
by using a bayesian model trained with EM. More work needs to be done to improve model performance,
but the presented model is a good starting point.
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4.2.3 Language Variation

The mode of (Grenager and Manning, 2006) relies on the availability of a syntactic parse for all the sentences
in the corpus. Parsers may not be available in all languages. Dan Klein’s thesis explores unsupervised parsing
(Klein, 2005) but assumes POS tags. It’s unclear whether parsing can really be done well from scratch with
minority languages. It’s also unclear how to evaluate parsers for languages that do not have some tagged
data available, e.g. the TreeBank. This problem is further exacerbated by a potential lack of linguistic
knowledge about the language. This is a general problem with minority languages, where lack of linguistic
data represents problems evaluating unsupervised methods.

There are obstacles to using the above model for languages other than English: rules to go from a syntactic
parse to dependency parse may not be readily available for the language of interest. Ultimately, the authors
need a dependency parse, which may be hard to obtain for some languages.

Another consideration is that languages that have rich morphology may already decorate the roles of each
dependent by way of morphological markers, thus making the generation of the ordering less important.
Such problems can be overcome by simple modifications of the model. Finally, the verb that is generated in
the generative process is a verb stem, which requires stemming (lemmatization). Stemmers are not available
for most languages.

The next task is a new one, introduced by (Chambers and Jurafsky, 2008). It is a good example of how
unsupervised learning can lead to new and exciting tasks that have not received enough attention to motivate
labeled data sets.

4.3 Relating Events within Narratives

A somewhat different attempt to extract a statistical characterization of verbs is described in (Chambers and
Jurafsky, 2008). Here, the goal is to construct a graph of events that tend to pattern together in narratives, or
complex events. For example, arrest, charge, plead, testify, convict, and acquit refer to parts of a conventional
narrative of criminal prosecution. Likewise, the verbs code, compile, execute, and debug can refer to
different aspects of a programming narrative.6 Both of these examples track related, often temporally-
ordered events involving a common participant/protagonist. For the verbs listed for the programming
narrative, the protagonist is always the agent: the person who writes code is (most likely) the one compiling,
executing, and debugging it. In contrast, the common protagonist in the criminal prosecution events—
the accused—takes the role of agent for some verbs (plead, testify) but the object/theme role for others
(arrest, convict, acquit).

Chambers and Jurafsky show that some of the structure of these narratives can be extracted automatically
from parsed text. They define a narrative chain as a partially-ordered sequence of events that tend to occur
with a common protagonist. Their goal, then, is to identify the related events in narratives and their ordering.
This ordering is not necessarily absolute: debug and execute might occur in either order (or multiple times,
even). Observe, also, that the component events and their relative order are not the only things we know
about narratives: we know, for instance, that convict and acquit are mutually exclusive, and a complete
natural language understanding system would need to know this as well for full inferential power.

4.3.1 Basic Model

Using a typed dependency parser, the authors extract from each document verb.dependencyType relations for
all verbs and all arguments occurring in the document. Each relation is a perspectivized event : it characterizes

6Such narratives are known in various disciplines as frames, schemas, or scripts.
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an event from the perspective of one of its participants (the participant filling the role corresponding to
the dependency type). The authors use a coreference resolution package to identify which verbs share
participants. For example, an individual accused of a crime might be the protagonist associated with event
roles arrest.object and plead.subject.

The unsupervised learning step is identifying correlated events across documents, where correlation is defined
by sharing a protagonist. Pointwise mutual information (PMI) is used as a formal measure of the correlation
between perspectivized events. In general, PMI measures the independence of two random events by dividing
their joint probability by the product of their marginal probabilities:

PMI(X,Y ) = log
P (X,Y )
P (X)P (Y )

A PMI score of PMI(x, y) = log 1 = 0 indicates that two outcomes can be predicted independently without
loss of information. If this is true for all outcomes, then the two events X and Y are independent. A positive
PMI score indicates that the joint outcome is more likely than the product of the marginals would suggest; a
negative score indicates that the joint outcome is less likely than the product of the marginals would suggest.

PMI is similar to the TF.IDF metric used in information retrieval. The intuition behind TF.IDF is that if
two terms tend to occur together across documents more than they occur independently, they are probably
related. For this scenario (assuming probabilities are estimated directly from counts), the log denominator for
highly correlated terms would be smaller than the value of the log numerator, and therefore highly correlated
terms would have a high (positive) PMI log score. Inversely correlated terms would have a negative PMI
score.

We write vi.ti for a perspectivized event, where vi is a verbal word type (e.g. arrest) and ti is a dependency
type observed for a participant of the verb (e.g. object). Chambers and Jurafsky score the correlation
between two perspectivized events v1.t1 and v2.t2 with PMI(v1.t1, v2.t2). They define the joint probability
of two perspectivized events as the fraction out of all coreferential perspectivized events in a document:

P (v1.t1, v2.t2) =
number of times v1.t1 and v2.t2 corefer

number of times any pair of event arguments v′1.t
′
1 and v′2.t

′
2 corefer (∀v′1, v′2, t′1, t′2)

Thus, more closely correlated events (as linked by their participants) will have higher PMI scores.

Given PMI scores between all pairs of events, one can look at a set of events in a document and predict
which other events are most likely to accompany them (summing over the pairwise PMI scores between
observed events and every unobserved event and taking the argmax yields the most likely unobserved event).
A ranked list of likely next events can be computed in this way, where the best guess (the argmax) has
ranking 1. These rankings are used to evaluate performance by way of a narrative cloze task, which consists
of stripping an event from a document, and measuring the predicted rank of that event given the other
events in the document. When tested on the Gigaword corpus, the results demonstrate that—with sufficient
training data—the protagonist-based model does better than a baseline which only uses verb coocurrence
counts to measure event relatedness.

4.3.2 Modeling Temporal Ordering

In their second model, Chambers and Jurafsky (2008) try to predict the pairwise ordering of correlated
events. They use a binary temporal classifier based on (Chambers et al., 2007) to predict a before or
other relation between two events—in other words, does one of them tend to precede the other? The
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classifier is trained with a (supervised) SVM using time-annotated data from the Timebank corpus 7, on
which it achieves 72.1% accuracy. The classifier was then asked to predict the ordering of narrative-related
events from the basic model.

The temporal narrative chains are evaluated by randomly ordering the events in a document, and checking
whether the model predicts a lower coherence score for that ordering than the actual ordering. The coherence
score is based on summing log differences in counts of before?(a, b) versus before?(b, a) for all events a, b
(see the paper for details). The overall accuracy is 75% (versus a random baseline of 50%); accuracy tends
to be better for larger chains.

For qualitative evaluation of the model, directed graphs of temporally-ordered narrative sequences can be
constructed by performing agglomerative clustering on PMI scores for event pairs. Two examples are given,
with mostly reasonable predictions made by the model. The more successful of the two is reproduced in
Figure 10.

Figure 10. Learned structure of the criminal prosecution narrative. Arrows represent temporal
relations. Reproduced from (Chambers and Jurafsky, 2008).

4.3.3 Discussion

This paper is notable for introducing a new task—learning of narrative event sequences—which essentially
concerns semantics, but can be acquired in an unsupervised fashion using clever statistical relatedness criteria.
The observation that sequentially related events tend to share participants would seem to be fairly general
in language.8 However, because their approach relies on so much (manually or automatically) annotated
structure—parses, coreference links, and (for their second model) a temporal classifier—extracting event
sequences for resource-poor languages will require a considerable amount of unsupervised NLP just for these
prerequisite tasks. And of course, syntactic parses alone are not likely to suffice in a morphologically-rich
language.

Since event sequence learning is a new task, its practical import is not immediately clear. One imagines that
it could be used alongside other methods to build rich semantic representations for deep language processing.
The authors also suggest that the narrative event chains might be used to learn semantic roles, which we
think is a promising idea worthy of further investigation.

7The Timebank corpus is a subset of the Treebank, with events annotated according to temporal ordering
8It would be interesting to evaluate this task on Chinese, as it is quite common to omit some of a verb’s arguments when

they can be inferred from context.
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4.4 Summary of Lexical Resources

The inputs and outputs for the lexical resource acquisition techniques detailed above are as follows:

Lexical Resources Haghighi et al. Grenager & Manning Chambers & Jurafsky 9

Phrase/Document-Level
Typed dependency parses    
Coreference resolver   
Temporal classifier  

Word-Level
Event relatedness scores # #
Predicted event ordering #
Per-word translation lexicon #
Word context counts  
Per-verb semantic roles #
Verb argument frames #
Stemmer  

Sub–Word-Level
Character n-grams  

 = input, #= output

Given the abundance of unannotated text data, unsupervised approaches are very appealing for natural
language processing. In this section we presented three unsupervised systems for the tasks relating to lexical
resource acquisition. Some of these systems achieve close to state-of-the-art results in domains previously
dominated by fully supervised approaches. The contributions we reviewed are:

• a model which learns translation lexicons without relying on parallel corpora (Haghighi et al., 2008);

• a Bayesian model which relates a verb, its semantic roles, and their possible syntactic realizations,
which is useful for semantic role labeling (Grenager and Manning, 2006); and

• a method for automatically constructing a graph of events that tend to pattern together in narratives,
or complex sequences of events (Chambers and Jurafsky, 2008).

Each of the three approaches presented in this section had their models initially inspired by English, but have
reasonable extensions available for other languages. For lexical translation, (Haghighi et al., 2008) present
orthographic features which improve performance when the two languages are historically related. However,
word context features work well for many divergent language pairs.

Both methods presented in (Grenager and Manning, 2006) and (Chambers and Jurafsky, 2008) require
parsers, which may not be easily available in all languages. (Chambers and Jurafsky, 2008) further assumes
the existence of a coreference resolution system, as well as a temporal classifier. This makes the task of
porting narrative event chain extraction to non-English even more difficult.

5 Overall discussion

Next we take a broader view, drawing connections among the three types of unsupervised tasks reviewed
above: sequence tagging, morphological segmentation, and lexical resource acquisition. We will focus on

9(Chambers and Jurafsky, 2008) presents two models, which are summarized in separate columns.
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three considerations: the types of input data required to produce output for various tasks; the relative gain
in semantic complexity of the output over the input; and the adaptability of the methodology to different
languages.

5.1 Inputs and Outputs

In Figure 11 (p. 28) we reproduce the input/output information from the three topics, concatenated together
in a single table.

Sequences/POS Morphology Lexical Resources
S&E H&K M+ G+ S&B H+ G&M C&J1 C&J2

Phrase/Document-Level
Unsegmented corpus  
Typed dependency parses    
Coreference resolver   
Temporal classifier  
Parallel sentences G
Phrasal aligner G

Word-Level
Word tokens in sequence   
Discrete set of labels/tags   
Per-type possible tags  
Per-label prototypes  
Per-token labels # #
Event relatedness scores # #
Predicted event ordering #
Per-word translation lexicon #
Word context counts   
Per-verb semantic roles #
Verb argument frames #
Stemmer  
Vocabulary (list of word types)  

Sub-Word–Level
Paradigms I
Segmentations J # J
Phonetic correspondences ( )
Character n-grams ( )   

Legend
training test

input G H
output I J

Figure 11. Inputs and outputs for all papers discussed. Rows represent information while columns
correspond to papers. (Paper citations are abbreviated with the first letter of the authors’ names,
with ‘+’ short for ‘et al.’.) Chambers and Jurafsky (2008) describe two models, which correspond to
the eighth and ninth columns, respectively.

This table exposes some patterns that are worth noting. First, we see that most of the annotation types
(rows) are relevant to only one category of problems (column groups). For instance, among the papers we
looked at, parses were only used as input for the lexical resource acquisition tasks, and POS tags were only
produced as output of the sequence tagging models. One imagines that both parses and POS tags might
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be useful as input for morphological tasks, but neither was exploited in the approaches we considered. The
two exception were character-level n-gram features and word context counts, which are easily extracted from
corpora.

Second, we note that the lexical resource acquisition approaches involved the greatest diversity of types of
data. This is not surprising, given the diversity and semantic complexity of tasks under this category.

Finally, many of the unsupervised procedures nevertheless make use of supervised tools (such as parsers) for
preprocessing. We would like to see more work that chains together unsupervised systems, better approxi-
mating what would be necessary for processing of resource-poor languages.

5.2 Semantic value added

Next, we examine the extent to which the aforementioned procedures for sequence labeling, morphological
analysis, and lexical resource building constitute the acquisition of semantic information. Intuitively, in-
formation about semantic roles or translations is more “semantic” than information about syntax or parts
of speech, which are more “grammatical”. In turn, grammatical information is closer to semantics than
raw text represented in n-gram or word context features. We refer to this qualitative notion of semantic
complexity/richness as semanticity. While there is no obvious way to quantify the semanticity of a type of
linguistic annotation, we construct a numerical semanticity scale based on our own intuitions about these
relative differences. This scale is shown in Figure 12. Though it is obviously subjective, we feel the scale
nevertheless has value in elucidating some of the contrasts between tasks and techniques.

Using this scale, we rank each type of input and output information relevant to the methods we have
discussed (see the table in the previous section). Then, for each approach, we take the difference between
the maximum input semanticity score and the maximum output semanticity scores to yield a semantic gain
value. These numbers are summarized in the following table:

text

0

syntax; 
aligned phrases

1

POS prototypes

0.25

POS dictionary

0.75

coref; times;
semantic roles

2

event sequences;
translations

3

segmentations; 
POS tags

1.5

morph paradigms

1.75

Figure 12. Semantic complexity rankings for different types of data annotations

Sequences/POS Morphology Lexical Resources
S&E H&K M+ G+ S&B H+ G&M C&J

Input semanticity .75 .25 0 0 1 0 1 2
Output semanticity 1.5 1.5 1.75 1.5 1.5 3 2 3
Semantic gain .75 1.25 1.75 1.5 .5 3 1 1

The biggest “win” semantically is multilingual lexicon induction from raw text (Haghighi et al., 2008),
which corresponds to our intuitions. The next biggest gains are with Monson et al.’s morphological paradigm
induction procedure, and Goldwater et al.’s Bayesian word segmentation model. In contrast, the multilingual
morphology approach (Snyder and Barzilay, 2008) do not achieve much gain in semanticity, as it requires
aligned parallel phrases as input—already a fairly sophisticated type of information relative to knowledge of
morpheme boundaries.
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Of course, this semantic gain rating is just one dimension for comparison among approaches. We hasten
to add that it does not take into account differences in performance among the approaches (as this is not
comparable across tasks), nor does it necessarily represent the relative costs of obtaining gold-standard
annotations.

5.3 Training procedures

Of three Bayesian models we examined, the two morphology ones (of Goldwater et al. and Snyder and
Barzilay) used Gibbs sampling to infer parameters for latent variables. The third Bayesian approach, that of
Grenager and Manning, used the EM algorithm for learning. EM-like methods for log-linear models were seen
in other papers—local gradient ascent in (Haghighi and Klein, 2006), and Contrastive Estimation (Smith
and Eisner, 2005). Other techniques include Canonical Correlation Analysis in (Haghighi and Klein, 2006),
pointwise mutual information scores in (Chambers and Jurafsky, 2008), and Singular Value Decomposition
in (Haghighi and Klein, 2006) for obtaining prototype similarity scores. Finally, Monson et al. introduced a
novel algorithm for morphological paradigm induction that uses substring counts over word types.

5.4 Language variation

Many of the presented papers require multiple inputs in addition to large amounts of text. When moving
to new languages, some resources may not be readily available and unsupervised tools for their production
may not exist. For example, in the case of (Smith and Eisner, 2005) a tagging dictionary that defines a set
of possible tags for each word is required. This may be difficult or expensive to produce for some languages,
which is why the authors investigate the performance of their algorithms under degradation of the dictionary.
Similarly, (Haghighi and Klein, 2006) require a few exemplar words for each POS tag in order to categorize
all words. This small amount of labeled data is reasonable for languages such as English, but may pose
problems in other less common languages.

The methods of (Chambers and Jurafsky, 2008) and (Grenager and Manning, 2006) require syntactic parses
of the training data. Obtaining parse trees is not an easy problem for languages where treebanks do not
exist. Klein (2005) and Smith (2006) explore unsupervised extraction of parse trees, but it remains unclear
whether unsupervised parsing can really be done well from scratch with minority languages. This problem
may be further exacerbated if there is a lack of linguistic knowledge about the language. While we hope
unsupervised methods will eventually be able to learn linguistic structure with very little human knowledge of
the language, we believe that continued construction of (and evaluation with respect to) annotated corpora
in additional languages is necessary to determine whether unsupervised methods can generalize to many
different types of languages.

6 Conclusion

We reviewed several unsupervised approaches to ubiquitous problems in natural language. These fall into
three broad categories:

• tagging words in sequences (Smith and Eisner, 2005; Haghighi and Klein, 2006);

• predicting segmentations of morphemes (Monson et al., 2007, 2008a,b; Snyder and Barzilay, 2008)
and words (Goldwater et al., 2006; Goldwater et al., in submission); and
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• building lexical resources that encode patterns associated with verbs (Grenager and Manning, 2006;
Chambers and Jurafsky, 2008) and bilingual translations for words in general (Haghighi et al., 2008).

In our analysis, we examined several aspects of these approaches: the types of models and training procedures
used; their required inputs and produced outputs; the extent to which the output is richer than the input in
terms of semantics; and the degree to which the models can be applied to other languages.

31



References

Meni Adler and Michael Elhadad. An unsupervised morpheme-based HMM for Hebrew morphological
disambiguation. In Proceedings of the 21st International Conference on Computational Linguistics and the
44th annual meeting of the ACL, pages 665–672, Sydney, 2006. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/P06-1084.

Brent Berlin and Paul Kay. Basic color terms: their universality and evolution. University of California
Press, Berkeley, 1969.

Michael R. Brent. An efficient, probabilistically sound algorithm for segmentation andword discov-
ery. Mach. Learn., 34(1-3):71–105, 1999. ISSN 0885-6125. doi: 10.1023/A:1007541817488. URL
http://www.springerlink.com/content/g840p555100429vj.

Joan L. Bybee. Morphology: a study of the relation between meaning and form. Typological studies in
language. John Benjamins, Amsterdam, 1985. ISBN 0915027372.

Nathanael Chambers and Dan Jurafsky. Unsupervised learning of narrative event chains. In Proceedings of
ACL-08: HLT, pages 789–797, Columbus, Ohio, June 2008. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/P/P08/P08-1090.

Nathanael Chambers, Shan Wang, and Dan Jurafsky. Classifying temporal relations between events. In
Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions, pages 173–176, Prague, Czech Republic, June 2007.
Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P/P07/P07-2044.

Mathias Creutz and Krista Lagus. Unsupervised models for morpheme segmentation and morphology learn-
ing. ACM Transactions on Speech and Language Processing, 4(1):3, 2007. ISSN 1550-4875. doi: 10.
1145/1187415.1187418. URL http://portal.acm.org/ft_gateway.cfm?id=1217101&type=pdf&coll=
GUIDE&dl=GUIDE&CFID=10012239&CFTOKEN=87673495.

John Goldsmith. Unsupervised learning of the morphology of a natural language. Computational Linguistics,
27(2):153–198, 2001. ISSN 0891-2017. doi: 10.1162/089120101750300490. URL http://portal.acm.org/
ft_gateway.cfm?id=972668&type=pdf&coll=GUIDE&dl=&CFID=10012198&CFTOKEN=64466389.

John Goldsmith. An algorithm for the unsupervised learning of morphology. Natural Language Engineering,
12(4):353–371, 2006. ISSN 1351-3249. doi: 10.1017/S1351324905004055. URL http://hum.uchicago.
edu/~jagoldsm/Papers/algorithm.pdf.

Sharon Goldwater, Thomas L. Griffiths, and Mark Johnson. A Bayesian framework for word segmen-
tation: exploring the effects of context. URL http://homepages.inf.ed.ac.uk/sgwater/papers/
journal-wordseg-hdp.pdf. In submission.

Sharon Goldwater, Thomas L. Griffiths, and Mark Johnson. Contextual dependencies in unsupervised word
segmentation. In Proceedings of the 21st International Conference on Computational Linguistics and
44th Annual Meeting of the Association for Computational Linguistics, pages 673–680, Sydney, Australia,
July 2006. Association for Computational Linguistics. doi: 10.3115/1220175.1220260. URL http://www.
aclweb.org/anthology/P06-1085.

Trond Grenager and Christopher D. Manning. Unsupervised discovery of a statistical verb lexicon. In
Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, pages 1–8,
Sydney, Australia, July 2006. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/W/W06/W06-1601.

32



Trond Grenager, Dan Klein, and Christopher Manning. Unsupervised learning of field segmentation models
for information extraction. In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL’05), pages 371–378, Ann Arbor, Michigan, June 2005. Association for Computational
Linguistics. doi: 10.3115/1219840.1219886. URL http://www.aclweb.org/anthology/P05-1046.

Aria Haghighi and Dan Klein. Unsupervised coreference resolution in a nonparametric Bayesian model.
In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 848–
855, Prague, Czech Republic, June 2007. Association for Computational Linguistics. URL http://www.
aclweb.org/anthology/P/P07/P07-1107.

Aria Haghighi and Dan Klein. Prototype-driven learning for sequence models. In Proceedings of the Human
Language Technology Conference of the NAACL, Main Conference, pages 320–327, New York City, USA,
June 2006. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/N/N06/
N06-1041.

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick, and Dan Klein. Learning bilingual lexicons from
monolingual corpora. In Proceedings of ACL-08: HLT, pages 771–779, Columbus, Ohio, June 2008.
Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P/P08/P08-1088.

Mark Johnson. Unsupervised word segmentation for Sesotho using adaptor grammars. In Proceedings of the
Tenth Meeting of ACL Special Interest Group on Computational Morphology and Phonology, pages 20–27,
Columbus, Ohio, June 2008. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/W/W08/W08-0704.

Dan Klein. The unsupervised learning of natural language structure. Ph.D. dissertation, Stanford University,
2005. URL http://www.cs.berkeley.edu/~klein/papers/klein_thesis.pdf.

George Lakoff. Women, fire, and dangerous things: what categories reveal about the mind. University of
Chicago Press, Chicago, 1987. ISBN 0226468038.

Percy Liang, Slav Petrov, Michael I. Jordan, and Dan Klein. The infinite PCFG using hierarchical
Dirichlet processes. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 2007. URL
http://aclweb.org/anthology/D07-1072.

Bernard Merialdo. Tagging English text with a probabilistic model. Computational Linguistics, 20(2):
155–171, 1994. ISSN 0891-2017. URL http://aclweb.org/anthology/J94-2001.

Christian Monson, Jaime Carbonell, Alon Lavie, and Lori Levin. ParaMor: Finding paradigms across
morphology. In Alessandro Nardi and Carol Peters, editors, Working Notes for the CLEF 2007 Workshop:
CLEF at Morpho Challenge 2007, Budapest, September 2007. URL http://www.clef-campaign.org/
2007/working_notes/monsonCLEF2007.pdf.

Christian Monson, Jaime Carbonell, Alon Lavie, and Lori Levin. ParaMor and Morpho Chal-
lenge 2008. In Working Notes for the CLEF 2008 Workshop: Morpho Challenge at CLEF 2008,
Aarhus, Denmark, September 2008a. URL http://www.clef-campaign.org/2008/working_notes/
Monson-paperCLEF2008.pdf.

Christian Monson, Alon Lavie, Jaime Carbonell, and Lori Levin. Evaluating an agglutinative segmentation
model for ParaMor. In Proceedings of the Tenth Meeting of ACL Special Interest Group on Computational
Morphology and Phonology, pages 49–58, Columbus, Ohio, June 2008b. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/W/W08/W08-0708.

Hoifung Poon and Pedro Domingos. Joint unsupervised coreference resolution with Markov Logic. In
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 650–659,
Honolulu, Hawaii, October 2008. Association for Computational Linguistics. URL http://www.aclweb.
org/anthology/D08-1068.

33



Eleanor Rosch. Principles of categorization. In Eleanor Rosch and B. B. Lloyd, editors, Cognition and
categorization, pages 27–48. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1978.

Noah A. Smith. Novel estimation methods for unsupervised discovery of latent structures in natural lan-
guage text. Ph.D. dissertation, Johns Hopkins University, October 2006. URL http://www.cs.cmu.edu/

~nasmith/papers/smith.thesis06.pdf.

Noah A. Smith and Jason Eisner. Contrastive estimation: training log-linear models on unlabeled data.
In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05),
pages 354–362, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics. doi: 10.
3115/1219840.1219884. URL http://www.aclweb.org/anthology/P05-1044.

Benjamin Snyder and Regina Barzilay. Unsupervised multilingual learning for morphological segmentation.
In Proceedings of ACL-08: HLT, pages 737–745, Columbus, Ohio, June 2008. Association for Computa-
tional Linguistics. URL http://www.aclweb.org/anthology/P/P08/P08-1084.

Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Hierarchical Dirichlet Processes.
Journal of the American Statistical Association, 101:1566–1581, 2006. doi: 10.1198/016214506000000302.
URL http://www.ingentaconnect.com/content/asa/jasa/2006/00000101/00000476/art00023.

Kristina Toutanova and Mark Johnson. A Bayesian LDA-based model for semi-supervised part-of-speech
tagging. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems 20, pages 1521–1528, Cambridge, MA, 2008. MIT Press. URL http://books.nips.
cc/papers/files/nips20/NIPS2007_0964.pdf.

Anand Venkataraman. A statistical model for word discovery in transcribed speech. Computational Linguis-
tics, 27(3):352–372, 2001. ISSN 0891-2017. URL http://aclweb.org/anthology/J01-3002.

David Yarowsky and Richard Wicentowski. Minimally supervised morphological analysis by multimodal
alignment. In Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics,
pages 207–216, Hong Kong, October 2000. Association for Computational Linguistics. doi: 10.3115/
1075218.1075245. URL http://www.aclweb.org/anthology/P00-1027.

34


